Part Number Hot Search : 
PC236 1408D MAX3130 RT1210 D74LV 167BZX 74HC15 ON0143
Product Description
Full Text Search
 

To Download 10-FY12NMA160SH01-M820F18 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet flowmnpc 1 1200v/160a mixed voltage npc topology reactive power capability low inductance layout split output enhanced lvrt capability solar inverter ups active frontend 10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y tj=25c, unless otherwise specified parameter symbol value unit repetitive peak reverse voltage v rrm 1200 v t h =80c 14 halfbridge igbt inverse diode features typ e s maximum ratings flow1 12mm housing target applications schematic condition t h =80c 14 t c =80c 19 t h =8 0c 31 t c = 8 0c 47 ma ximum junction temperature t j max 150 c halfbridge igbt t h =80c 117 t c = 80c 151 t j 1 50c v ce < =v ces t h =80c 260 t c = 80c 394 t sc t j 1 50c 10 s v cc v ge =15v 800 v s hort circuit ratings 480 power dissipation per igbt v ge t j max p tot c v w a a dc current forward current per diode repetitive peak forward current a w maximum junction temperature t j =t j max gat e-emitter peak voltage collector-emitter break down voltage pulsed collector current i fsm a p tot i fav power dissipation per diode t j =25c t j =t j max t p =10ms 14 dc collector current v ces i cpulse i c v a 175 t urn off safe operating area t j =t j max t p limited by t j max 20 1 200 480 copyright by vincotech 1 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition np diode t h =80c 53 t c =8 0c 72 t h =8 0c 63 t c =8 0c 96 np igbt t h =80c 76 t c =8 0c 101 t j 1 50c v ce < =v ces t h =80c 96 t c =8 0c 145 t sc t j 1 50c 6 s v c c v ge =15v 360 v i f p eak repetitive reverse voltage t j =25c 45 0 6 50 450 20 v rrm a t j =t j max w pow er dissipation per diode p tot dc forward current t j =t j max t j =t j max i c short circuit ratings dc collector current power dissipation per igbt turn off safe operating area collector-emitter break down voltage t p limited by t j max v ge v 70 0 1 50 maximum junction temperature c t j max a pu l sed collector current gate-emitter peak voltage v ces i cpuls a v a v c w 17 5 maximum junction temperature t j =t j max t j max p tot np inverse diode t h =80c 15 t c =8 0c 21 t h =8 0c 28 t c =8 0c 42 halfbridge diode t h =80c 31 t c =8 0c 46 t h =8 0c 61 t c =8 0c 92 12 00 a 140 a w c maximum junction temperature t j max 150 r epetitive peak forward current i frm t p limited by t j max pea k repetitive reverse voltage 175 30 v rrm v c v po wer dissipation per diode p tot t j =t j max t j =t j max dc forward current i f repetitive peak forward current i frm a a t j =t j max w t p limited by t j max i f maximum junction temperature t j max p tot power dissipation per diode t j =t j max v rrm dc forward current 650 p eak repetitive reverse voltage copyright by vincotech 2 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet tj=25c, unless otherwise specified parameter symbol value unit maximum ratings condition dc link capacitor thermal properties insulation properties v is t=2s dc voltage 4000 v min 12,7 mm min 8,06 mm tc=25c clearance insulation voltage creepage distance t op operation temperature under switching condition -4 0+(tjmax - 25) storage temperature t stg -40+125 c ma x.dc voltage v max v c 6 3 0 copyright by vincotech 3 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet par ameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max tj=25c 1,97 2,7 tj=125c 1,65 tj=25c 0,25 tj=125c thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 2,24 k/w tj=25c 5 5,80 6,5 tj=125c tj=25c 1 2,02 2,70 tj=125c 2,37 tj=25c 0,25 tj=125c tj=25c 480 tj=125c tj=25c 127 tj=125c 129 tj=25c 26 tj=125c 30 tj=25c 219 tj=125c 274 tj=25c 45 tj=125c 59 tj=25c 1,52 tj=125c 2,60 tj=25c 2,69 tj=125c 4,19 740 none 9200 ns na pf nc v ma mws 540 tj=25c 160 15 0 0 15 20 15 1200 tj=25c 0 960 160 25 integrated gate resistor halfbridge igbt gate emitter threshold voltage 600 v ma 1 200 7 characteristic values forward voltage v f halfbridge igbt inverse diode i r value conditions reverse current i ges output capacitance turn-off energy loss per pulse gate-emitter leakage current fall time turn-off delay time input capacitance t f e on r gint rise time turn-on energy loss per pulse turn-on delay time collector-emitter saturation voltage collector-emitter cut-off current incl. diode v ge(th) v ce(sat) i ces e off t r t d(off) reverse transfer capacitance gate charge c rss rgoff=4 f=1mhz vce= vge c ies q gate rgon=4 t d(on) c oss 0,006 100 v 350 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 0,37 k/w tj=25c 1 2,00 2,6 tj=125c 1,88 tj=25c 50 tj=125c tj=25c 86 tj=125c 113 tj=25c 57 tj=125c 109 tj=25c 2,93 tj=125c 7,16 di(rec)max tj=25c 3683 /dt tj=125c 1519 tj=25c 0,53 tj=125c 1,38 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,11 k/w 740 ns a v nc mws a a/s tj=25c 100 150 15 c 960 160 reverse recovery time reverse recovered energy peak rate of fall of recovery current reverse recovered charge i r np diode diode forward voltage gate charge erec i rrm v f peak reverse recovery current reverse leakage current q rr t rr q gate 350 15 700 rgon=4 copyright by vincotech 4 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet par ameter symbol unit v ge [v] or v gs [v] v r [v] or v ce [v] or v ds [v] i c [a] or i f [a] or i d [a] t j min typ max characteristic values value con ditions tj=25c 5 5,8 6,5 tj=125c tj=25c 1,05 1,48 1,85 tj=125c 1,62 tj=25c 0,05 tj=125c tj=25c 700 tj=125c tj=25c 170 tj=125c 171 tj=25c 29 tj=125c 31 tj=25c 235 tj=125c 265 tj=25c 54 tj=125c 71 tj=25c 1,29 tj=125c 1,70 tj=25c 2,88 tj=125c 3,95 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 0,99 k/w tj=25c 1,23 1,89 2,20 tj=125c 1,79 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 3,43 k/w v f 700 276 9240 25 0 diode forward voltage e on t f turn-off energy loss per pulse v ce =v ge none 20 rgon=4 15 15 0 na 65 0 mws ma v v f=1 m hz 0 rgoff=4 274 15 pf n s e off input capacitance output capacitance c rss c oss c ies reverse transfer capacitance turn-on delay time np inverse diode integrated gate resistor turn -on energy loss per pulse turn-off delay time collector-emitter saturation voltage collector-emitter cut-off incl diode t d(off) t r t d(on) rise time v ge(th) np igbt fall time gat e -emitter leakage current gate emitter threshold voltage i ces r gint i ges v ce(sat) 150 100 tj=25c 0,008 v tj=25c 2,46 3,5 tj=125c 2,07 tj=25c 200 tj=125c tj=25c 83 tj=125c 116 tj=25c 113 tj=125c 136 tj=25c 6,17 tj=125c 12,86 di(rec)max tj=25c 2952 /dt tj=125c 3586 tj=25c 1,66 tj=125c 3,63 thermal resistance chip to heatsink per chip r thjh thermal grease thickness 50um = 1 w/mk 1,15 k/w 3 884 t=25c k f mw/k 120 mws k vincotech ntc reference q rr e rec b-value 3964 t=25c b-value b(25/100) rgon=4 b(25/50) 120 0 1 00 700 15 t rr reverse recovery time i rrm halfbridge diode diode forward voltage rev e rse leakage current v f i r peak rate of fall of recovery current dc link capacitor c reve rse recovery energy c value r thermistor ? r/r r100=1486 rated resistance powe r dissipation constant t=25c t=25c t=25c deviation of r25 power dissipation p mw 210 % +4,5 -4,5 3,5 t=100c 150 80 peak reverse recovery current reverse recovered charge 21511 100 nf a ns a/ s a c v copyright by vincotech 5 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 1 igbt figure 2 igbt typical output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt fi gure 4 fwd typical transfer characteristics typic al diode forward current as i c = f(v ge ) a f unction of forward voltage half bridge typical output characteristics ha l f bridge igbt and neutral point fwd 0 50 1 0 0 150 200 250 300 0 1 2 3 4 5 i c (a) v ce (v) 0 50 1 0 0 150 200 250 300 0 1 2 3 4 5 i c (a) v ce (v) i f = f(v f ) at at t p = 25 0 s t p = 250 s v c e = 10 v 0 20 4 0 6 0 80 100 0 2 4 6 8 10 12 i c (a) v ge (v) t j = 25 c t j = t j m ax -25 c 0 75 1 5 0 225 300 375 450 0 1 2 3 4 i f (a) v f (v) t j = 25 c t j = t jmax -25 c copyright by vincotech 6 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 5 igbt figure 6 igbt typical switching energy losses typic al switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a r goff = 4 figure 7 fwd figur e 8 fwd typical reverse recovery energy loss typic al reverse recovery energy loss half bridge half bridge igbt and neutral point fwd e on high t e of f high t e on low t e of f low t 0 1 2 3 4 5 6 7 8 0 2 0 40 60 80 100 120 140 160 180 200 e (mws) i c (a) e of f high t e on high t e on low t e of f low t 0 1 2 3 4 5 6 7 8 0 4 8 1 2 1 6 20 e (mws) r g (  ) as a function of collector current as a function of gate resistor e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a e re c high t e re c low t 0 0, 5 1 1 ,5 2 2,5 0 20 40 60 80 100 120 140 160 180 200 e (mws) i c (a) e re c high t e re c low t 0 0, 5 1 1 ,5 2 0 4 8 12 16 20 e (mws) r g (  ) copyright by vincotech 7 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 9 igbt figure 10 igbt typical switching times as a typic al switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 12 5 c t j = 125 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a r goff = 4 figure 11 fwd figur e 12 fwd typical reverse recovery time as a typic al reverse recovery time as a half bridge half bridge igbt and neutral point fwd t do f f t f t do n t r 0,00 0, 0 1 0,10 1,00 0 20 40 60 80 100 120 140 160 180 200 t (ms) i c (a) t do f f t f t do n t r 0,00 0, 0 1 0,10 1,00 0 4 8 12 16 20 t (ms) r g (  ) function of collector current function of igbt turn on gate resistor t rr = f(ic) t rr = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v t rr hi gh t t rr low t 0,00 0, 0 5 0,10 0,15 0,20 0,25 0 4 8 12 16 20 t rr (ms) r gon (  ) t rr high t t rr low t 0 0, 0 3 0,06 0,09 0,12 0,15 0 20 40 60 80 100 120 140 160 180 200 t rr (ms) i c (a) copyright by vincotech 8 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 13 fwd figure 14 fwd typical reverse recovery charge as a typic al reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v figure 15 fwd figur e 16 fwd typical reverse recovery current as a typic al reverse recovery current as a half bridge igbt and neutral point fwd half bridge q rr high t q rr low t 0 2 4 6 8 10 0 4 8 1 2 1 6 20 q rr ( c) r gon ( w ) q rr high t q rr low t 0 2 4 6 8 10 1 2 0 20 40 60 80 100 120 140 160 180 200 q rr ( c) i c (a) function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v i rr m high t i rr m low t 0 30 6 0 9 0 120 150 0 4 8 12 16 20 i rrm (a) r gon (  ) i rr m high t i rr m low t 0 30 6 0 9 0 120 150 0 20 40 60 80 100 120 140 160 180 200 i rrm (a) i c (a) copyright by vincotech 9 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 17 fwd figure 18 fwd typical rate of fall of forward typic al rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /d t,di rec /dt = f(r gon ) at at t j = 25 / 125 c t j = 25/ 125 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v figure 19 igbt fi gure 20 fwd igbt transient thermal impedance fwd transient thermal impedance half bridge igbt and neutral point fwd half bridge di 0 /dt t di re c / dt t 0 15 0 0 3000 4500 6000 7500 0 4 8 12 16 20 di rec / dt (a/ms) r gon (  ) di re c / dt t di o /dt t 0 10 0 0 2000 3000 4000 5000 6000 0 20 40 60 80 100 120 140 160 180 200 di rec / dt (a/ms) i c (a) as a function of pulse width as a function of pulse width z thjh = f(t p ) z thjh = f(t p ) at at d = t p / t d = t p / t r thjh = 0,3 7 k/w r thjh = 1,1 1 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,06 2,4e+00 0,07 6,8e+00 0,15 4,0e-01 0,25 1,2e+00 0,12 1,0e-01 0,57 2,8e-01 0,03 1,3e-02 0,12 6,0e-02 0,01 8,4e-04 0,06 1,3e-02 0,03 1,1e-03 z thjh (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0, 2 0 ,1 0,05 0,02 0,01 0,005 0.000 z thjh (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0, 2 0,1 0,05 0,02 0,01 0,005 0.000 copyright by vincotech 10 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 21 igbt figure 22 igbt power dissipation as a colle ctor current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 c t j = 175 c v ge = 15 v fi gure 23 fwd figur e 24 fwd power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) hal f bridge igbt and neutral point fwd half bridge 0 10 0 2 00 300 400 500 0 50 100 150 200 p tot (w) t h ( o c) 0 40 8 0 1 20 160 200 0 50 100 150 200 i c (a) t h ( o c) 150 100 at at t j = 150 c t j = 150 c 0 25 5 0 7 5 100 125 0 50 100 150 200 p tot (w) t h ( o c) 0 20 4 0 6 0 80 0 50 100 150 200 i f (a) t h ( o c) copyright by vincotech 11 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 25 igbt figure 26 igbt safe operating area as a function gate voltage vs gate charge of collector-emitter voltage i c = f(v ce ) v ge = f(q g ) at at d = single pulse i c = 16 0 a th = 80 oc v ge = 15 v t j = t jmax oc half bridge half bridge igbt and neutral point fwd i c (a) v ce (v) 10 3 10 0 10 -1 10 1 10 2 10 1 10 2 100us 1ms 10m s 100m s dc 10 0 10 3 0 2 4 6 8 10 1 2 1 4 16 0 100 200 300 400 500 600 700 800 v ge (v) q g (nc) 240v 96 0v copyright by vincotech 12 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 1 igbt figure 2 igbt typical output characteristics typic al output characteristics i c = f(v ce ) i c = f(v ce ) at at t p = 25 0 s t p = 250 s t j = 25 c t j = 125 c v ge from 7 v to 17 v in steps of 1 v v ge from 7 v to 17 v in steps of 1 v figure 3 igbt fi gure 4 fwd typical transfer characteristics typic al diode forward current as i c = f(v ge ) a f unction of forward voltage i f = f(v f ) ne utral point igbt and half bridge fwd neutral point 0 50 1 0 0 150 200 250 300 350 400 0 1 2 3 4 5 i c (a) v ce (v) 140 180 0 50 1 0 0 150 200 250 300 350 400 0 1 2 3 4 5 i c (a) v ce (v) at at t p = 250 s t p = 250 s v c e = 10 v 0 20 4 0 6 0 80 100 120 0 2 4 6 8 10 12 i c (a) v ge (v) t j = 25 c t j = t j m ax -25 c 0 30 6 0 9 0 120 150 180 0 1 2 3 4 i f (a) v f (v) t j = 25 c t j = t jmax -25 c copyright by vincotech 13 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 5 igbt figure 6 igbt typical switching energy losses typic al switching energy losses as a function of collector current as a function of gate resistor e = f(i c ) e = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 126 c t j = 25/ 126 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 99 a r g off = 4 figure 7 fwd figur e 8 fwd typical reverse recovery energy loss typic al reverse recovery energy loss as a function of collector current as a function of gate resistor neutral point igbt and half bridge fwd neutral point e of f high t e on high t e on low t e of f low t 0 1 2 3 4 5 6 7 0 2 0 40 60 80 100 120 140 160 180 200 e (mws) i c (a) e of f high t e on high t e on low t e of f low t 0 1 2 3 4 5 6 7 0 4 8 1 2 1 6 20 e (mws) r g ( w ww w ) e rec = f(i c ) e rec = f(r g ) wit h an inductive load at with an inductive load at t j = 25 / 126 c t j = 25/ 126 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 99 a e re c high t e re c low t 0 1 2 3 4 5 0 2 0 40 60 80 100 120 140 160 180 200 e (mws) i c (a) e re c high t e re c low t 0 1 2 3 4 0 4 8 1 2 1 6 20 e (mws) r g ( w ww w ) copyright by vincotech 14 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 9 igbt figure 10 igbt typical switching times as a typic al switching times as a function of collector current function of gate resistor t = f(i c ) t = f(r g ) wit h an inductive load at with an inductive load at t j = 12 6 c t j = 126 c v ce = 350 v v ce = 350 v v ge = 15 v v ge = 15 v r gon = 4 i c = 100 a r goff = 4 figure 11 fwd figur e 12 fwd typical reverse recovery time as a typic al reverse recovery time as a function of collector current function of igbt turn on gate resistor neutral point igbt and half bridge fwd neutral point t do f f t f t do n t r 0,001 0, 0 1 0,1 1 0 20 40 60 80 100 120 140 160 180 200 t ( m s) i c (a) t do f f t f t do n t r 0,001 0, 0 1 0,1 1 0 4 8 12 16 20 t ( m s) r g ( w ww w ) t rr = f(ic) t rr = f(r gon ) at at t j = 25 / 126 c t j = 25/ 126 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v t rr high t t rr low t 0,0 0, 2 0 ,4 0,6 0,8 0 4 8 12 16 20 t rr (ms) r gon (  ) t rr high t t rr low t 0,00 0, 0 5 0,10 0,15 0,20 0 20 40 60 80 100 120 140 160 180 200 t rr (ms) i c (a) copyright by vincotech 15 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 13 fwd figure 14 fwd typical reverse recovery charge as a typic al reverse recovery charge as a function of collector current function of igbt turn on gate resistor q rr = f(i c ) q rr = f(r gon ) at at a t t j = 25 / 126 c t j = 25/ 126 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v figure 15 fwd figur e 16 fwd typical reverse recovery current as a typic al reverse recovery current as a neutral point neutral point igbt and half bridge fwd q rr hi gh t q rr low t 0 5 10 1 5 2 0 0 4 8 12 16 20 q rr ( c) r gon ( w ) q rr high t q rr low t 0 5 10 1 5 2 0 0 20 40 60 80 100 120 140 160 180 200 q rr ( c) i c (a) function of collector current function of igbt turn on gate resistor i rrm = f(i c ) i rrm = f(r gon ) at at t j = 25 / 126 c t j = 25/ 126 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v i rr m high t i rr m low t 0 25 5 0 7 5 100 125 150 0 4 8 12 16 20 i rrm (a) r gon (  ) i rr m high t i rr m low t 0 25 5 0 7 5 100 125 150 0 20 40 60 80 100 120 140 160 180 200 i rrm (a) i c (a) copyright by vincotech 16 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 17 fwd figure 18 fwd typical rate of fall of forward typic al rate of fall of forward and reverse recovery current as a and reverse recovery current as a function of collector current function of igbt turn on gate resistor di 0 /dt,di rec /dt = f(ic) di 0 /d t,di rec /dt = f(r gon ) at at t j = 25 / 126 c t j = 25/ 126 c v ce = 350 v v r = 350 v v ge = 15 v i f = 100 a r gon = 4 v ge = 15 v figure 19 igbt fi gure 20 fwd igbt transient thermal impedance fwd transient thermal impedance as a function of pulse width as a function of pulse width neutral point neutral point igbt and half bridge fwd di 0 /dt t di re c / dt t 0 15 0 0 3000 4500 6000 7500 9000 0 4 8 12 16 20 di rec / dt (a/ms) r gon (  ) di 0 /dt t di re c / dt t 0 10 0 0 2000 3000 4000 5000 6000 0 20 40 60 80 100 120 140 160 180 200 di rec / dt (a/ms) i c (a) z thjh = f(t p ) z thjh = f(t p ) at at d = tp / t d = tp / t r thjh = 0, 9 9 k/w r thjh = 1,1 5 k/w igbt thermal model values fwd thermal model values r (c/w) tau (s) r (c/w) tau (s) 0,08 6,3e+00 0,05 4,9e+00 0,24 1,1e+00 0,13 8,2e-01 0,52 2,8e-01 0,59 1,8e-01 0,09 6,6e-02 0,22 4,7e-02 0,05 1,3e-02 0,10 7,8e-03 0,02 1,2e-03 0,07 9,8e-04 z thjh (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 -5 d = 0,5 0, 2 0 ,1 0,05 0,02 0,01 0,005 0.000 z thjh (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0, 2 0,1 0,05 0,02 0,01 0,005 0.000 copyright by vincotech 17 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 21 igbt figure 22 igbt power dissipation as a colle ctor current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i c = f(t h ) at at t j = 17 5 oc t j = 175 oc v ge = 15 v fi gure 23 fwd figur e 24 fwd power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) ne utral point igbt and half bridge fwd neutral point 0 50 1 0 0 150 200 0 50 100 150 200 p tot (w) t h ( o c) 0 20 4 0 6 0 80 100 120 0 50 100 150 200 i c (a) t h ( o c) 150 tot (w) 75 f (a) at at t j = 150 oc t j = 150 oc 0 25 5 0 7 5 100 125 0 50 100 150 200 p tot th ( o c) 0 15 3 0 4 5 60 0 50 100 150 200 i f th ( o c) copyright by vincotech 18 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 25 np igbt inverse diode figure 26 np igbt inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 25 0 s d = tp / t r thjh = 3,4 3 k/w figure 27 np i gbt inverse diode figure 28 np igbt inverse diode power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) np igbt inverse diode 0 10 2 0 3 0 40 50 60 0 1 2 3 4 i f (a) v f (v) t j = 25 c t j = t j max -25 c z thjc (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0, 2 0 ,1 0,05 0,02 0,01 0,005 0.000 60 25 at at t j = 175 oc t j = 175 oc 0 10 2 0 3 0 40 50 0 50 100 150 200 p tot (w) th ( o c) 0 5 10 1 5 2 0 0 50 100 150 200 i f (a) th ( o c) copyright by vincotech 19 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 1 half bridge inverse diode figure 2 half bridge inverse diode typical diode forward current as diode transient thermal impedance a function of forward voltage as a function of pulse width i f = f(v f ) z thjh = f(t p ) at at t p = 25 0 s d = t p / t r thjh = 2,2 4 k/w figure 3 half bridge inverse diode figure 4 half bridge inverse diode power dissipation as a forwa rd current as a function of heatsink temperature function of heatsink temperature p tot = f(t h ) i f = f(t h ) half bridge inverse diode 0 5 10 1 5 2 0 25 0 0,5 1 1,5 2 2,5 3 3,5 i f (a) v f (v) t j = 25 c t j = t j max -25 c z thjc (k/w) t p (s) 10 1 10 0 10 -1 10 -2 10 -4 10 -3 10 -2 10 -1 10 0 10 1 10 2 10 -5 d = 0,5 0, 2 0 ,1 0,05 0,02 0,01 0,005 0.000 at at t j = 150 oc t j = 150 oc 0 20 4 0 6 0 80 0 50 100 150 200 p tot (w) t h ( o c) 0 5 10 1 5 2 0 25 0 50 100 150 200 i f (a) t h ( o c) copyright by vincotech 20 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 1 thermistor typical ntc characteristic as a function of temperature r t = f(t) thermistor 0 40 0 0 8000 12000 16000 20000 24000 25 50 75 100 125 r/  t (c) ntc-typical temperature characteristic copyright by vincotech 21 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet t j 125 c r gon 4  r goff 4  figure 1 half bridge igbt figure 2 half bridge igbt turn-off switching waveforms & definition of t doff , t eoff turn-on switching waveforms & definition of t don , t eon (t eoff = integrating time for e off ) (t eon = integrating time for e on ) v ge (0%) = -1 5 v v ge (0%) = -15 v v ge (100%) = 15 v v g e (100%) = 15 v v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 100 a i c (100%) = 100 a t doff = 0,2 7 s t don = 0,1 3 s t eoff = 0,6 4 s t eon = 0,2 8 s figure 3 half bridge igbt figure 4 half bridge igbt switching definitions half bridge general conditions = = = i c 1 % v ce 90% v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 % time (us) t do f f t eoff v ce i c v ge i c 1 0% v ge 10% t do n v c e 3% -50 0 50 100 150 200 250 2,9 3 3,1 3,2 3,3 % time(us) i c v ce t e o n v ge turn-off switching waveforms & definition of t f turn-on switching waveforms & definition of t r v c (100%) = 700 v v c (100%) = 700 v i c (100%) = 100 a i c (100%) = 100 a t f = 0,0 6 s t r = 0,0 3 s fitted i c10 % i c 90% i c 60% i c 4 0% -25 0 25 50 75 100 125 0,15 0,2 0,25 0,3 0,35 0,4 % time (us) v ce i c t f i c 1 0% i c 90% -50 0 50 100 150 200 250 3,1 3,15 3,2 3,25 3,3 % time(us) t r v ce i c copyright by vincotech 22 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 5 half bridge igbt figure 6 half bridge igbt turn-off switching waveforms & definition of t eoff turn-on switching waveforms & definition of t eon p off (100%) = 70, 11 kw p on (100%) = 70, 11 kw e off (100%) = 4,1 9 mj e on (100%) = 2,6 0 mj t eoff = 0,6 4 s t eon = 0,2 8 s figure 7 half bridge fwd turn-off switching waveforms & definition of t rr switching definitions half bridge i c 1 % v ge 90% -25 0 25 50 75 100 125 -0,2 0 0,2 0,4 0,6 0,8 % time (us) p off e off t eoff v ce 3% v ge 10% -25 0 25 50 75 100 125 2,9 3 3,1 3,2 3,3 3,4 % time(us) p on e on t eon 150 % v d (100%) = 700 v i d (100%) = 100 a i rrm (100%) = -11 3 a t rr = 0,1 1 s i rr m 10% i rrm 90% i rrm 100% t rr -150 -100 -50 0 50 100 3,1 3,15 3,2 3,25 3,3 3,35 time(us) i d v d fi tted copyright by vincotech 23 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet figure 8 0 figure 9 0 turn-on switching waveforms & definition of t qrr turn-on switching waveforms & definition of t erec (t qrr = integrating time for q rr ) (t erec = integrating time for e rec ) i d (100%) = 10 0 a p rec (100%) = 70, 11 kw q rr (100%) = 7,1 6 c e rec (100%) = 1,3 8 mj t qrr = 0,2 2 s t erec = 0,2 2 s figure 11 buck stage switching measurement circuit measurement circuits swi tching definitions half bridge t qr r - 150 -100 -50 0 50 100 150 3,1 3,2 3,3 3,4 3,5 % ti m e(us) i d q rr -25 0 25 5 0 7 5 100 125 3,1 3,2 3,3 3,4 3,5 % time(us) p re c e r ec t er e c copyright by vincotech 24 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet version ordering code in datamatrix as in packaging barcode as without thermal paste 12mm housing 10-FY12NMA160SH01-M820F18 m820f m820-f without thermal paste 12mm housing with pressfit 10-py12nma160sh01-m820f18y m820fy m820-fy outline ordering code & marking ordering code and marking - outline - pinout pinout copyright by vincotech 25 revision: 1
10-FY12NMA160SH01-M820F18 10-py12nma160sh01-m820f18y datasheet disclaimer life support policy as used herein: 2. a critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. the information given in this datasheet describes the type of component and does not represent assured characteristics. for tested values please contact vincotech.vincotech reserves the right to make changes without further notice to any products herein to improve reliability, function or design. vincotech does not assume any liability arising out of the application or use of any product or circuit described herein; neither does it convey any license under its patent rights, nor the rights of others. vincotech products are not authorised for use as critical components in life support devices or systems without the express written approval of vincotech. 1. life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in labelling can be reasonably expected to result in significant injury to the user. copyright by vincotech 26 revision: 1


▲Up To Search▲   

 
Price & Availability of 10-FY12NMA160SH01-M820F18

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X